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Abstract—360-degree video transmission consumes 4∼6x the
bandwidth of a regular video, and thus imposes significant
challenges to networks. To address this challenge, in this paper,
we propose a motion-prediction-based transmission mechanism
that matches network video transmission to viewer needs. Ideally,
if viewer motion is perfectly known in advance, we could reduce
bandwidth consumption by 80%. Practically, however, we have
to address the random nature of viewer motion, in order to
guarantee the quality of the viewing experience. Based on our
experimental study of viewer motion (comprising 16 video clips
and over 150 subjects), we propose a machine learning mecha-
nism that predicts viewer motion. Based on such predictions, we
propose a partial-content-transmission mechanism that reduces
the overall bandwidth consumption while providing probabilistic
performance guarantees. Real-trace-based evaluations show that
the proposed scheme significantly reduces bandwidth consump-
tion with negligible performance degradation. For example, given
a failure ratio of 0.1%, we can reduce bandwidth consumption
by more than 40%.

I. INTRODUCTION

In virtual reality (VR), viewers typically watch 360-degree

videos using head-mounted displays (HMDs). When watching

a 360-degree video, at any given time, a viewer is facing a

certain direction. Thus, the HMD needs to render and display

only the content in this viewing direction, which is typically

20% of the whole sphere. Therefore, if the viewer’s viewpoint

can be predicted well, she needs to receive only a portion of

the content, greatly reducing the bandwidth consumption.

We first built a testbed to collect 3D motion data using

HMDs. Wearing an HMD, a viewer’s motion has three degrees

of freedom (pitch, yaw, and roll), as illustrated in Fig. 1.

Our experiment collected motion data in the three dimensions,

based on 16 clips of 360-degree video and 153 viewers. In

analyzing the collected data, we found that viewer motion

had strong short-term auto-correlations in all three dimensions.

Using regression techniques, we could predict viewer motions

with reasonable accuracy on a time scale of 100-500 ms, as

shown in Sec. III.

However, due to the random nature of viewer motion,

motion prediction is prone to error. Given such error-prone

prediction, we need to transmit a larger area than the field of

view (FOV, shown in Fig. 2), in order to guarantee viewing

quality. Based on the motion prediction, we design a transmis-

sion scheme to decide which portion of the content to transmit

to the viewer. The objective is to minimize the required

bandwidth while upholding viewing quality guarantees.

Fig. 1. The three angles [1]
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Fig. 2. Field of view

II. EXPERIMENT SETUP AND DATA COLLECTION

A. Hardware and Software

We use the Oculus DK2 as the hardware, Oculus Runtime

7.0 as the hardware driver and Color Eyes as the video player.

We developed a software to play video clips automatically to

viewers. Subjects sit on a chair that can rotate horizontally

360◦. The HMD of Oculus DK2 is connected to a PC with a

cable.

B. 360 Video Content and Motion Measurement

We downloaded 16 clips of 360-degree video from Youtube

and cut each of them into 30 seconds. The video clips and

sample motion data can be found at http://360videoexp.com/.

When a subject is watching a video, his or her motion is

recorded and logged. As usual, the motion includes 3 degrees

of freedom, pitch, yaw and roll (i.e., X , Y , and Z angles).

When wearing an HMD, the viewer’s initial position defines

the zero degree for pitch, yaw and roll. Each dimension is

denoted by an angle (−180◦ to 180◦).

C. Subjects

In total, 153 volunteers joined the experiment: 35 of them

watched all 16 video clips and 118 of them watched 3∼5

randomly selected video clips.

D. Data Preprocessing

The overall collected data include 985 views from the

subjects. Our software collected 7∼9 samples per second, and

the intervals between two samples were slightly random. To

facilitate the following study, we generate uniformly 10 sam-

ples per second from the raw data using linear interpolation.

After interpolation, we have in total about 295500 samples.



TABLE I
THE ERROR OF Y ANGLE PREDICTION (VALUES IN DEGREES)

Tr(s) 0.1 0.2 0.3 0.4 0.5
Naive (Mean) 2.58 5.09 7.53 9.89 12.16
Naive (RMSE) 4.71 9.10 13.23 17.06 20.58
Naive (99th) 18.24 35.24 50.85 65.14 77.89

Naive (99.9th) 32.59 62.75 88.90 112.90 130.25
NN (Mean) 0.92 2.44 4.33 6.33 8.40
NN (RMSE) 1.92 4.52 7.77 11.09 14.48
NN (99th) 6.54 17.25 30.54 44.03 57.59

NN (99.9th) 14.34 35.16 61.02 84.46 107.14
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Fig. 3. The transmitted round
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Fig. 4. Consumed bandwidth v.s. failure
ratio

III. MOTION PREDICTION

By analyzing the collected motion traces, we found that

viewer motion has strong temporal auto-correlation in a short

period. This observation suggests that we can predict the future

viewpoint based on existing samples.

Specifically, in this paper, we consider two models: Naive

and neural networks (NN). The Naive model is the baseline

model where we use the current angle as the value of the

future angle. In the NN model, we use 3 layers and 5 hidden

neurons, with samples in the past second as input. To address

the periodicity issue of angle prediction, we first project the

angles to a circle of unit radius, use the projected physical

location on the circle for prediction, and then project the

location back to the predicted angles.

Table I shows the test error for the prediction of the Y
angle, which is harder to predict than the X angle. We use

50% of the data for training the model with the objective

of minimizing the sum of square errors, and the other 50%

for test. Table I shows that the further the prediction, the

larger the error. Compared with naive prediction results, the

neural network models achieve a better accuracy. For example,

given a prediction window of 0.2s, all four indicators (mean,

root-mean-square error (RMSE), 99th percentile and 99.9th

percentile) improve by about 50%.

IV. MOTION-PREDICTION-BASED TRANSMISSIONS

Given a viewpoint prediction, we obtain the predicted FOV,

which can be covered by a circle with beam angle θ0. In order

to guarantee the viewer experience, we add a margin with

beam angle θE to the circle in order to obtain a larger circular

area that we transmit. This transmitted circular area has a beam

angle of θ0 + 2θE .

Assume there are N frames in the videos being watched. To

measure the viewer experience, we introduce an indicator Ifi

to denote whether the frame i is a failure or not, where Ifi = 1
if frame i has a subset of pixels required by the viewer but not

transmitted and Ifi = 0 otherwise. The indicator Ifi is decided

by the following parameters: the prediction error exi and eyi ,

the Z angle Zi, and the beam angle of the transmitted circle

θ0+2θE . Therefore, we denote Ifi = ff (e
x
i , e

y
i , Zi, θ0+2θE).

Given the failure ratio rf as user experience constraint, we

need to decide the optimal margin θE by solving the following

optimization problem numerically.

argmin
θE

area(θ0 + 2θE); (1)

s.t. 1
N

∑N
i=1 I

f
i ≤ rf ; (2)

Ifi = ff (e
x
i , e

y
i , Zi, θ0 + 2θE). (3)

Since the larger θE is, the more the bandwidth it is con-

sumed, and the less the failure occurs, binary search can be

used to obtain the optimal θE effectively.

V. PERFORMANCE EVALUATION

We evaluate the proposed algorithms based on the collected

motion data. We run 10 iterations to obtain the average values.

In each iteration, 50% of the data are used for training the

prediction models; the other 50% are used to evaluate the

bandwidth requirement under a given failure ratio constraint.
Figs. 4 shows the consumed bandwidth vs. failure ratio

of our designed scheme, for a prediction window ranging

from 0.1s to 0.5s. We can see that for a given failure ratio,

the required bandwidth increases as the prediction window

increases. For instance, given a failure ratio of 0.1%, 10-

20% additional bandwidth is consumed when the prediction

window grows from 0.1s to 0.2s, or from 0.2s to 0.3s. This

is because when the prediction window Tr is smaller, we can

obtain more accurate predictions that help us target the viewing

area and reduce the required bandwidth. For example, given

a prediction window of 0.2s, we can reduce the transmission

bandwidth by more than 40% given a failure ratio of 0.1%.

VI. CONCLUSION

To address the significant bandwidth requirements of 360-

degree videos, we propose a motion-prediction-based trans-

mission scheme. First, based on our collected viewer motion

data, we show that motion prediction is feasible within a 100-

500 ms timeframe. Based on this observation, we develop

regression models that predict the viewpoint, and design a

partial content transmission scheme that guarantees the viewer

experience. Our trace-driven simulation results show signif-

icant bandwidth reduction. For example, given a prediction

window of 0.2s, our proposed scheme can reduce bandwidth

consumption by more than 40% while guaranteeing a failure

ratio of 0.1%.
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