
Shooting a Moving Target: Motion-Prediction-Based
Transmission for 360-Degree Videos

Yanan Bao, Huasen Wu, Tianxiao Zhang, Albara Ah Ramli and Xin Liu
Department of Computer Science, University of California, Davis, CA 95616, USA

{ynbao, hswu, txzhang, arramli, xinliu}@ucdavis.edu

Abstract—Enabled by the rapid development of virtual re-
ality hardware and software, 360-degree video content has
proliferated. From the network perspective, 360-degree video
transmission imposes significant challenges because it consumes
4∼6x the bandwidth of a regular video with the same resolution.
To address these challenges, in this paper, we propose a motion-
prediction-based transmission mechanism that matches network
video transmission to viewer needs. Ideally, if viewer motion
is perfectly known in advance, we could reduce bandwidth
consumption by 80%. Practically, however, to guarantee the
quality of viewing experience, we have to address the random
nature of viewer motion. Based on our experimental study of
viewer motion (comprising 16 video clips and over 150 subjects),
we found the viewer motion can be well predicted in 100∼500ms.
We propose a machine learning mechanism that predicts not only
viewer motion but also prediction deviation itself. The latter is
important because it provides valuable input on the amount
of redundancy to be transmitted. Based on such predictions,
we propose a targeted transmission mechanism that minimizes
overall bandwidth consumption while providing probabilistic
performance guarantees. Real-data-based evaluations show that
the proposed scheme significantly reduces bandwidth consump-
tion while minimizing performance degradation, typically a 45%
bandwidth reduction with less than 0.1% failure ratio.

I. INTRODUCTION

Since 2015, virtual reality (VR) has become increasingly
popular, propelled by big developments in emerging VR hard-
ware and software, including head-mounted displays (HMDs)
such as Facebook’s Oculus and HTC’s Hive. One major VR
application is watching 360-degree videos, also called spheri-
cal videos, immersive videos, or 360 videos. From a network
perspective, providing 360-degree videos is challenging. First,
the transmission of a 360-degree video consumes 4∼6x the
bandwidth of a regular one with the same resolution [1], [2].
Second, because HMDs are close to the eyes, they demand
higher video resolution; typically, a good viewing experience
requires resolution of 6K instead of 4K. Third, an HMD cannot
be shared with other viewers, and therefore even in a small
room, there could be more than one 360-degree video stream-
ing. Because of these factors, the increasing popularity of
360-degree videos will impose significant bandwidth demands
on networks, and satisfying these demands is challenging, in
particular for wireless networks.

However, not all data is utilized equally. HMD-based 360-
degree video viewing has a unique attribute: when watching
a 360-degree video, at any given time, the viewer is facing a
certain direction. Therefore, only the content in this viewing
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direction needs to be rendered and displayed on the HMD,
which is typically 20% of the whole sphere. Therefore, if the
viewer’s viewpoint (defined in Sec. II-A) can be predicted
well, he/she needs to receive only a portion of the content,
greatly reducing the bandwidth consumption. This observation
motivates us to consider the following two questions:
• Is it feasible to predict viewer motion and what is the

time scale for relatively accurate predictions?
• Due to its random nature, motion prediction is prone to

error. Based on such information, how shall we design
transmission schemes that minimize network bandwidth
consumption while providing viewing experience guaran-
tees?

To answer these questions, we first built a testbed to collect
3D motion data using HMDs [4]. Wearing an HMD, a viewer’s
motion has three degrees of freedom (pitch, yaw, and roll), as
illustrated in Fig. 1. Our experiment collected motion data in
the three dimensions, based on 16 clips of 360-degree video
and 153 viewers. In analyzing the collected data, we found that
viewer motion has strong short-term auto-correlations in all
three dimensions. Using regression techniques, one can predict
viewer motions with reasonable accuracy on a time scale of
100∼500 ms, as shown in Sec. IV.

However, due to the random nature of viewer motion,
motion prediction is prone to error. Given such error-prone pre-
diction, how can we provide viewing experience guarantees?
Our answer is to provide an appropriate level of redundancy
in the amount of video content transmitted. Specifically, we
not only predict viewer motion, but also estimate the accuracy
of the prediction. Estimating accuracy provides an additional
indicator of the amount of redundancy to be transmitted. The
intuition is as follows: if we know the prediction accuracy
is high, we need to transmit only the content in a relatively
small area corresponding to the actual viewing direction. On



the other hand, if the prediction accuracy is low, we enlarge the
transmitted area to maintain the quality of viewing experience.
In other words, the prediction of motion and the transmission
of content are closely related.

Based on the motion prediction and its accuracy, we design
a set of transmission schemes to decide which portion and
how much of the content we should transmit to the viewer.
The objective is to minimize the required bandwidth while up-
holding viewing quality guarantees. Our transmission schemes
consider transmission redundancy size as well as partial or full
frame transmission threshold, as discussed in detail in Sec. V.
Our result shows that in predicting the next 0.2s, given a failure
ratio of 0.1%, our scheme reduces bandwidth by more than
45%.

In summary, our work makes the following contributions:
• We collect motion data for 153 subjects watching 360-

degree videos. From the collected data, we observe a
strong short-term auto-correlation in viewer motions,
which indicates that viewer motion can be well predicted
based on motion history.

• We develop regression models to predict viewer’s view-
point and the prediction’s deviation. The deviation pro-
vides additional information that can be used to decide
the amount of redundancy needed.

• We design algorithms that utilize the predicted result
for efficient 360-degree video transmission. Evaluations
based on our collected data show that the proposed
algorithms can reduce bandwidth consumption by more
than 45%, given a 0.2s prediction window and a failure
ratio of less than 0.1%.

II. PROBLEM STATEMENT

A. Basics of 360-Degree Videos

In this work, we consider 360-degree video viewing (or
playback) using HMDs, such as Facebook’s Oculus and HTC’s
Hive. A 360-degree video is typically created by recording
a real-world panorama, where the view in every direction is
recorded simultaneously using an omnidirectional camera or
a collection of cameras. The images of different directions
are stitched together using software. Each stitched image is
called a frame. Such frames are transmitted to viewers as
regular video transmission [5]. During playback (or viewing),
the HMD senses the viewing direction of the viewer. Based on
the viewing direction, the corresponding portion of the image,
defined by the Field Of View (FOV), is rendered and then
displayed on the HMD.

The FOV determines the extent of the observable world that
can be seen [6], as shown in Fig. 2. Vertical FOV is the range
of angle from the top to the bottom, horizontal FOV is from
the farthest left to the farthest right, and diagonal FOV is from
the top-left corner to the bottom-right corner. For Oculus DK2,
its vertical, horizontal, and diagonal FOVs are 90◦, 110◦, and
120◦, respectively [7]. We call the center of the image that
the viewer is watching the viewpoint, i.e., point O′ in Fig. 2.
The pitch and yaw angles in Fig. 1 determine the viewpoint.

For a given device, the distance between the viewer’s eyes
and the display is fixed, and so are the vertical, horizontal and
diagonal FOVs. Thus the viewpoint and the roll angle (the Z
axis rotation as shown in Fig. 1) decide the area of the image
seen by the viewer. Note that the Euler’s angles (pitch, yaw,
roll) are corresponding to the (X,Y, Z) axes that the head
rotates around. Therefore, we refer to them as X , Y and Z
angles, respectively, for simplicity in the following.

B. Motivations

Currently, frames, comprising panoramic images of 360-
degree videos, are transmitted from a video server to a client.
However, at any given time, because a viewer can watch only
a portion of the whole sphere defined by the viewpoint and
the roll angle, the viewer consumes about only 20% of the
transmitted data.

This unique attribute of 360-degree video viewing provides
an opportunity to reduce bandwidth consumption. Ideally, if
we know the viewpoint and the roll angle in advance, we can
transmit only the corresponding portion of the image instead of
the whole panoramic image. In other words, we can transmit
a portion of the frame instead of the whole frame, and thus
reduce the bandwidth consumption significantly.

Practically, to achieve this goal, we need to predict viewer
motion with high accuracy and utilize such information for
intelligent transmissions while providing viewing experience
guarantees. Due to the random nature of viewer motion, both
the predicted viewpoint and the predicted roll angle could
be inaccurate. Thus, we also need an indicator for these
unpredictable situations, along with corresponding methods to
address this issue, in order to guarantee viewing experience.
To the best of our knowledge, this work is the first attempt
to study the feasibility of motion prediction, and to propose
viable transmission mechanisms based on motion prediction
for 360-degree videos.

C. Proposed Framework

Fig. 3 illustrates the key components of the proposed
framework. At a given time t, based on the collected motion
traces from the viewer, the video server or its proxy predicts
the viewer motion for t + Tr, and decides the viewpoint and
the size of the partial frame (a full frame is considered as a
special case of the partial frame.). Tr is the prediction window.
The partial frame is then transmitted to the viewer. At time
t + Tr of the playback, depending on the viewpoint and the
roll angle of the viewer, the device renders the area in the
viewer’s FOV. If all the pixels in the FOV are included in the
partial frame, the viewing is considered a success. However,
if the pixels are not completely included in the partial frame,
the viewing is called a failure.

We propose a performance metric, failure ratio, to quantify
viewer experience. Specifically, the failure ratio is defined as
the percentage of frames in which the viewer’s FOV is not
completely transmitted. A failure ratio is prescribed to provide
probabilistic guarantees for viewing experience (for example,
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from 1% to 0.01%). Our objective is to minimize the overall
required bandwidth given the failure ratio constraint.

We note that our definition of failure is rather conservative.
After all, when a failure happens, it is highly possible that
only a small portion of the FOV is not included in the
transmitted partial frame (shown in Sec. VI). Therefore to
complement this performance metric, we further define a Ratio
of Missing Pixels (RMP), as the ratio of the missing pixels
to the total pixels viewed. We use the failure ratio as the
viewing experience constraint in the algorithm development
and complement it with the RMP in the numerical evaluation.
This approach provides a more comprehensive understanding
of user experience.

D. Time Scale

In the proposed framework, we need to select an appropriate
prediction window, Tr. Clearly, there is a tradeoff in deciding
Tr. The shorter the Tr, the more accurate the motion predic-
tion, but the less time available to transmit the predicted frame.
Specifically, Tr needs to be large enough to include the time
for a viewer’s viewpoint signal to transmit from the client to
the 360-degree video server/proxy, the time for a frame to be
transmitted from the server to the client, the processing time
of the sensors on the HMDs, and the video frame processing
and rendering time.

Therefore, an appropriate value of Tr depends on the
network setting. We assume that the viewer and the server are
relatively close. This is a reasonable assumption in today’s
networks because CDNs are widely deployed for content
delivery that pushes contents closer to viewers for better
viewing experience. Cellular network providers use similar
techniques to push content close to the edge of networks (base
stations or eNodeBs). Alternatively, we could also assume a
proxy server that is located near the base station, so that the
content transmission occurs between the viewer and the proxy.

Next, we consider the round trip time (RTT) between a
viewing device and its nearby server. For different networks
(e.g., wired, WiFi, LTE, etc.), different settings, and realtime
traffic, this time could be different. However, given the server
is nearby, the RTT is normally limited to 20∼50ms. For exam-
ple, in LTE, the transmission frames are 1ms each. The RTT,
including uplink and downlink transmission time, buffering
time, retransmission time, UE and eNodeB processing delay,
resource request and grant time, is below 15ms (for pre-

allocated resources) and 21ms (for scheduled resources) [8],
[9], [10]. Therefore, if the server is near the eNodeB, 20ms is
a reasonable estimate for RTT.

In this work, we hope to focus on failures caused by
user behavior, prediction errors and our transmission schemes.
Therefore, we assume the requested partial frame can be
successfully transmitted to the viewer within the Tr time
frame. This assumption requires that we choose Tr several
times of the RTT to be conservative.

Combining all these factors, we conclude that, for our
purpose, 100∼500ms is a reasonable range of Tr. We use
these values in our trace-driven evaluations.

E. Prediction and Transmission

We design motion algorithms for predicting future motions.
As a first attempt, we consider the features of motion predic-
tion to be the past and current motions of the viewer. Other
potential features, such as the viewer’s motion pattern, other
viewers’ motion history, and video content, will be considered
in the future to further improve the prediction accuracy.

One essential and unique requirement of our prediction
model is that we need to estimate not only the viewpoint, but
also the accuracy of our predictions. This is critical because
the accuracy can help us determine how much redundancy we
must transmit to accommodate the random nature of viewer
motion. At one extreme, if we know that the prediction is
perfect, each partial frame needs to contain only the area
of viewer’s FOV. At the other extreme, if we know that the
prediction is highly inaccurate, we may need to transmit the
entire frame. In other words, the prediction and the trans-
mission are closely related. The relationship requires that we
predict not only the viewpoint, but also its accuracy. Based on
such predictions, we then propose transmission schemes. This
joint prediction-transmission design allows us to significantly
reduce the bandwidth consumption while guaranteeing the
quality of the 360-degree video viewing experience.

We note that the VR hardware and software are fast evolv-
ing. Existing challenges include uneven projection from 3D
to 2D, as well as nonlinearity pixel sampling. Therefore, in
this work, we do not limit to the specific implementation of a
particular VR hardware/software. We assume an ideal scenario
where for a given viewpoint and a roll angle, a perfect 2D
area defined by the FOV can be decoded from the sphere.
Furthermore, we assume a round portion of the frame can
be trimmed and transmitted. It is reasonable as modern video
compression/transmission is done block by block, with each
block of 8× 8 or 16× 16 pixels. Last, we ignore the specifics
of video coding, which is our future work. These assumptions
allow us to focus on the feasibility of viewer motion prediction
and its utilization in video content transmissions.

III. EXPERIMENT SETUP AND DATA COLLECTION

To study the viewer motion with HMDs, we setup an
experimental environment with Oculus DK2. We developed
a software to play 16 videos automatically to viewers. After
each view of a video clip, the subject was required to provide



a subjective score in the range of 1 to 5. This score is used to
detect whether the video content is interesting to the viewer
or not. On the other hand, it helps the subject concentrate on
the whole video clip. When a subject is watching a video,
his/her motion is recorded and logged. As usual, the motion
includes 3 degrees of freedom, pitch, yaw and roll (i.e., X , Y ,
and Z angles). When wearing an HMD, the viewer’s initial
position defines the zero degree for pitch, yaw and roll. Each
dimension is denoted by an angle (−180◦ to 180◦).

A. Hardware and Software

We use the Oculus DK2 as the hardware, Oculus Runtime
7.0 as the hardware driver and Color Eyes as the video player.
Subjects sit on a chair that can rotate horizontally 360◦. The
HMD of Oculus DK2 is connected to a PC with a cable.

B. 360-Degree Video Content and Motion Measurement

We downloaded 16 clips of 360-degree video from Youtube
and cut each of them into 30s segments. Among the 16 videos,
14 are at 4K resolution, one at 2K resolution, and the other
one at 1080P. All the videos run at 30 frames per second.
The 16 selected videos cover a variety of popular 360-degree
video content available from the Internet: 7 videos have sports
content, e.g., basketball, boxing, soccer, skiing, etc., 4 videos
contain landscape, e.g., Grand Canyon and tropical rain forest,
and the other 5 videos contain entertainment activities, such as
thrill rides and kite flying. In terms of camera movement, half
of the videos have the camera fixed when shooting the video,
while cameras of the other half videos move throughout the
playback time. The video clips and sample motion data can be
found at http://360videoexp.com/. These videos have typically
a bitrate of 20-40Mbps.

For our first attempt, we removed the audio of the video
clips, so that subjects motion was related only to visual
content. Each subject was asked to watch the video clips in
order, while his/her viewing motion was recorded. We took 7-
9 measurements per second, each measurement including X ,
Y and Z angles.

C. Subjects

In total, 153 volunteers joined the experiment: 35 of them
watched all 16 video clips, and 118 of them watched 3∼5
randomly selected video clips. Most of the volunteers are
people on campus, and most of them have their first VR
experience in our experiment. The age distribution is as
follows: 10∼20 (36%), 20∼30 (54%), 30∼40 (4%), 40∼50
(4%), 50∼60 (2%). 38% of the volunteers were female, and
34% of the volunteers wore glasses.

D. Data Preprocessing

The overall collected data include 985 views from the
subjects, totalling 8.2 recorded hours of viewer motion. Our
software collected 7∼9 samples per second, and the intervals
between two samples were slightly random due to the pro-
cessing load on hardware. To facilitate the following study, we
generate uniformly 10 samples per second from the raw data

using linear interpolation. Linear interpolation determines a
sample based on the line segment connecting two neighboring
raw data points. After interpolation, we have in total about
295500 samples.

E. Sample Distribution

We first plot the estimated cumulative distribution function
(CDF) of motion samples in Fig. 4(a). It shows that viewers
focus on the front center much more often than the other di-
rections. For instance, in 90% of time, X , Y and Z angles are
within −33◦∼33◦, −101◦∼107◦, and −11◦∼9◦, respectively;
in 99% of time, the X , Y and Z angles are within −66◦∼61◦,
−171◦∼169◦, and −28◦∼27◦, respectively. It is reasonable
because most 360-degree videos have the best viewpoint in
the front direction, such as roller coaster, skiing and boxing.
Viewers may occasionally turn their heads, but they may soon
turn back, due to the video content. The distribution of the Y
angle, the horizontal angle, spreads out the most, while the Z
angle, the roll angle, has a very small range.

To calculate the difference between two angles, whose
values are both in [−180, 180), we use the following equation

∆(θ1, θ2) = mod(θ1 − θ2 + 180◦, 360◦)− 180◦. (1)

Fig. 4(b) shows the CDF for the change of angles within
0.2s. From this result, we can see viewers’ movement is
limited within 0.2s. For instance, in 90% of time, the X , Y
and Z angles are within −15.31◦∼15.06◦, −34.73◦∼35.54◦,
and −8.61◦∼8.62◦, respectively; in 99.9% of time, the X , Y
and Z angles are within −25.64◦∼25.85◦, −60.11◦∼64.60◦,
and −25.01◦∼24.03◦, respectively.

F. Temporal Auto-Correlation Analysis

In Fig. 4(c), we show the auto-correlation of the three angles
for lags ranging from 0 to 2s. The figures show that, in a
short period, e.g., 0.1s to 0.5s, the auto-correlation is very
strong (larger than 0.8 for the X and Y angles, and larger than
0.7 for the Z angle). In Fig. 4(d), we show that the moving
velocity also has a strong short-term temporal auto-correlation.
For both X angle and Y angle, the correlation is about 0.6
within 0.2s, and for the Z angle, the correlation is about 0.36
for 0.2s. This auto-correlations are also reflected in frequency
domain, as shown in Fig. 5. From the figure, we can see that
the majority of the signal has spectrum less than 1 Hz, and
there is very little high spectrum signal.

Based on these results, we can see that in a short period,
viewer motion is predictable. However, in our application,
we need to keep the large prediction error in a very small
percentage, e.g., 0.1%, where a naive prediction model cannot
satisfy the requirement. In the next part, we introduce machine
learning based regression models to achieve this goal.

IV. MOTION PREDICTION

In the previous section, we have seen that viewer motion
shows strong temporal auto-correlation in small time scales. In
this section, we develop regression models to predict viewer
motions.
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Fig. 5. Single-sided amplitude spectrum of the traces.

Specifically, we only need to predict the viewpoint (as
shown in Fig. 2) and its deviation. We do not need to predict
the rotation around the Z axis (roll angle, as shown in Fig. 1).
This is due to the transmission schemes that we develop, as
discussed in detail in Sec. V.

A. Viewpoint Prediction

We predict the future viewpoint based on the current and
past rotation status, which are treated as features in the
prediction model. Note that for a fixed HMD, once the rotation
angles around the X and Y directions are given, the viewpoint
is determined. Therefore, predicting viewpoint is equivalent to
predicting the X and Y angles.

Let Xt and Yt be the angles of pitch and yaw at time t.
Without loss of generality, we consider the initial viewpoint
has X0 = 0 and Y0 = 0. Furthermore, let Xt1:t2 and Y t1:t2

be the measurements of the X and Y angles from time t1
to time t2, respectively, i.e., Xt1:t2 = (Xt1 , Xt1+1, . . . , Xt2)
and Y t1:t2 = (Yt1 , Yt1+1, . . . , Yt2).

At time t, we have measurements X0:t and Y 0:t and we
hope to predict (Xt+Tr , Yt+Tr ), which uniquely decides the
viewpoint. This is a time-series regression problem. We treat
angles in each direction independently and train two separate
models for the prediction of Xt and Yt. The reason is that auto-
correlations are much stronger than the correlation between
X angle and Y angle. As we have observed in Sec. III-F, the
auto-correlations are strong in short period, and therefore we
predict based on the motion data collected in a sliding window
of size Tw, i.e.,

X̂t+Tr = fx,Tr (Xt:(t−Tw)); (2)

Ŷt+Tr = fy,Tr (Y t:(t−Tw)). (3)

We consider three regression models: Naive, linear regres-
sion (LR), and neural networks (NN). The Naive model is the

baseline model where we use the current angle as the value
of the future angle, e.g., X̂t+Tr = Xt and Ŷt+Tr = Yt. For
the NN model, we use 3 layers and 5 hidden neurons. We use
50% of data for training to minimize the sum of square error,
and the other 50% for test to see the prediction accuracy.

We choose the LR and NN models because they are com-
monly used for regression. However, in our scenario, there is a
special feature of angle prediction: because Xt and Yt are both
angles in the range of [−180◦, 180◦), −180◦ and 179◦ have a
difference of only 1◦. However, if we directly use the values of
angles in Eqs. (2) and (3), they are considered (significantly)
different. To address this issue, we first project the angles to a
circle with unit radius, use the projected physical location on
the circle to do prediction, as shown in Eqs. (4) and (5), and
then project the location back to the predicted angles using
Eq. (6). Specifically, following equations show the relation
between an angle θt and its projected point (Pd1,t, Pd2,t) in a
d1 × d2 space.

Pd1,t = sin(θt); (4)
Pd2,t = cos(θt); (5)

θt = arctan(Pd1,t/Pd2,t). (6)

This technique reduces the prediction error by about 40%
compared to using the angles directly in Eqs. (2) and (3).

Last, we define the prediction error as follows:

ext+Tr = |∆(Xt+Tr − X̂t+Tr )|; (7)

eyt+Tr = |∆(Yt+Tr − Ŷt+Tr )|. (8)

Table I shows the test error for the Y angle prediction.
We choose Y angles because, compared to X angles, they are
harder to predict. From Table I, we can see that the further we
predict, the larger the error, for all methods. The NN models
are the most accurate. Comparing the neural-network-based
results and the naive prediction results, we can see a large gain
of using regression methods. For example, for 0.2s prediction,
all four indicators (mean, root-mean-square error (RMSE),
99th percentile and 99.9th percentile) have been improved
by about 50%. For 0.3s prediction, all four indicators have
been improved by 30%∼45%. The X angle has the similar
improvement, which is omitted here.

B. Deviation Prediction
In the previous subsection, we have developed regression

models to predict the viewpoint. Ideally, we wish to know



TABLE I
THE ERROR OF VIEWPOINT CENTER PREDICTION (Y ANGLE IN DEGREES)

Tr(s) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Naive (Mean) 2.58 5.09 7.53 9.89 12.16 14.33 16.39 18.39 20.29 22.06
Naive (RMSE) 4.71 9.10 13.23 17.06 20.58 23.84 26.82 29.70 32.33 34.76
Naive (99th) 18.24 35.24 50.85 65.14 77.89 89.22 99.25 108.87 117.75 125.23

Naive (99.9th) 32.59 62.75 88.90 112.90 130.25 143.52 154.57 161.44 166.44 170.43
LR (Mean) 0.95 2.53 4.47 6.56 8.72 10.87 12.97 15.02 17.03 18.92
LR (RMSE) 1.98 4.84 8.28 11.78 15.28 18.54 21.61 24.55 27.32 29.84
LR (99th) 7.00 18.89 33.17 47.18 60.82 72.47 83.20 93.11 102.28 110.14

LR (99.9th) 14.90 38.25 65.41 89.60 112.03 128.86 140.65 151.73 159.40 163.29
NN (Mean) 0.92 2.44 4.33 6.33 8.40 10.43 12.45 14.39 16.34 18.13
NN (RMSE) 1.92 4.52 7.77 11.09 14.48 17.61 20.64 23.51 26.27 28.76
NN (99th) 6.54 17.25 30.54 44.03 57.59 68.88 80.02 90.21 99.88 108.22

NN (99.9th) 14.34 35.16 61.02 84.46 107.14 124.75 137.81 149.68 157.24 162.83

TABLE II
THE ERROR OF VIEWPOINT DEVIATION PREDICTION (Y ANGLE IN DEGREES)

Tr(s) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
LR (Mean) 0.79 2.12 3.78 5.53 7.26 8.98 10.60 12.13 13.59 14.95
LR (RMSE) 1.68 3.82 6.43 9.10 11.70 14.19 16.41 18.45 20.40 22.10
LR (99th) 5.57 14.93 26.14 37.89 48.93 59.25 67.92 76.13 83.92 90.25

LR (99.9th) 13.43 32.71 56.28 78.30 98.42 114.29 125.67 134.16 140.98 143.81
NN (Mean) 0.68 1.77 3.18 4.71 6.32 7.92 9.40 10.81 12.21 13.48
NN (RMSE) 1.50 3.34 5.73 8.24 10.74 13.13 15.24 17.19 19.08 20.71
NN (99th) 4.71 12.54 22.87 33.87 44.86 54.87 63.11 70.71 78.03 84.39

NN (99.9th) 11.52 28.33 50.07 71.77 91.65 108.35 120.50 128.87 135.95 138.74

the accuracy of such predictions. Intuitively, accuracy provides
additional input on the amount of redundancy to be transmit-
ted: if we know the prediction accuracy is high, we need to
transmit the content in a relatively smaller area that contains
the FOV in the actual viewing direction. On the other hand,
if the prediction accuracy is low, we enlarge the area that is
transmitted to the viewer.

In other words, knowing ext+Tr and eyt+Tr helps us better
decide the amount of content to be transmitted. Since we could
not know the value of ext+Tr and eyt+Tr, we propose to use
regression methods to estimate them. Specifically, we have

êxt+Tr = fex,Tr (X̂t+Tr ,Xt:(t−Tw)); (9)

êyt+Tr = fey,Tr (Ŷt+Tr ,Y t:(t−Tw)). (10)

Again, we use linear regression and neural networks as the
prediction models. Table II shows that neural networks have
better accuracy compared with linear regressions in predicting
the Y angle error. The X angle has the similar result, and is
omitted here.

V. MOTION-PREDICTION-BASED TRANSMISSIONS

In this section, moving beyond prediction, we design
motion-prediction-based transmission algorithms. Based on
the predicted viewpoint, we can reduce bandwidth transmis-
sion by targeting only at the area that the viewer will likely
watch. However, to avoid viewing experience deterioration
under motion randomness, we need to solve bandwidth mini-
mization problem subject to viewing experience constraint.

Specifically, given a viewpoint prediction, in order to guar-
antee the viewer experience, we need to decide the additional
area to transmit. In particular, since we only transmit partial
frames, due to the presence of motion prediction error, the
transmitted data may not cover the whole FOV that a viewer
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actually watches. As discussed in Sec. II-C, we define such
an event as a failure. In order to guarantee viewer experience,
we limit the failure ratio to be less than a predefined ratio,
e.g., 0.1%. In this section, we first calculate the transmitted
area, and then design several targeted transmission algorithms
to leverage the prediction results for bandwidth optimization.

A. Transmitted Area

The actual viewing area is a rectangle determined by the
viewpoint and the roll angle. To guarantee the transmitted data
covers the actual viewing area with high probability, we trans-
mit more data than necessary. Basically, instead of rectangle,
we transmit data for a round shape from the video server to
the client. The techniques below are also applicable to other
transmitted shapes. In the 3D space, this area corresponds to
the angle ratio of a circular cone. In the following, we calculate
the transmitted area for the targeted round.

We first calculate the diagonal FOV, which determines the
beam angle of the targeted round. As shown in Fig. 6, a viewer
is at the center denoted by point O, and @AABCD defines the
viewing area. Let α and β be the vertical and horizontal FOVs,
respectively. The following statement presents an equation to



calculate the diagonal FOV.
Statement 1: For a rectangle viewing area with vertical

FOV α and horizontal FOV β, its diagonal FOV is given by:

diag(α, β) = 2 arccos
[

1√
1+tan2(α2 )+tan2( β2 )

]
. (11)

As a reference point, the Oculus DK2 has 90◦ vertical FOV
and 110◦ horizontal FOV. Therefore its diagonal FOV is 120◦.

Proof: We next show how Eq. (11) is calculated.
As shown in Fig. 6, ∠AOC is the diagonal FOV. The center

of the rectangle is the viewpoint, denoted by point O′. Then
∠EOO′ is half of the vertical FOV and∠FOO′ is half of the
horizontal FOV, i.e., ∠EOO′ = α/2 and ∠FOO′ = β/2.

We assume the distances from the point O to the vertices
of @AABCD are 1 without loss of generality. Line segment
OO′ is a perpendicular to the rectangle @AABCD at point O′,
whose length is given by h. Then, considering right triangles
4EO′O and 4FO′O, we have

a = h tan(α2 ), b = h tan(β2 ). (12)

In the rectangle @AAEO′F , we have

r =
√
a2 + b2. (13)

Considering the right triangle 4AOO′, we have

h2 + r2 = 1. (14)

Therefore, from Eqs. (12), (13) and (14), we have

h = 1√
1+tan2(α/2)+tan2(β/2)

. (15)

The conclusion then follows as ∠AOC = 2 arccos(h).
We typically transmit data for the targeted round plus a

margin, where the beam angle of the targeted round is θ0 and
the margin is θE , as shown in Fig. 7. Then the transmitted
round has a beam angle of

θtotal = θ0 + 2θE . (16)

The following statement reveals a sufficient condition for a
successful transmission, i.e., the entire viewing area is covered
by the transmitted area.

Statement 2: If the X angle prediction deviation ex and the
Y angle prediction deviation ey meet the following constraint

diag(ex, ey) ≤ θE , (17)

then the transmitted round area covers all possible viewing
area for the predicted frame.

Proof: From the X angle prediction deviation and Y
angle prediction deviation, we can create a rectangle, whose
diagonal FOV equals to diag(ex, ey). This is the maximal
angle that the center of the smaller round with FOV θ0 can
move away from the center of the larger round in Fig. 7.
Therefore, when diag(ex, ey) ≤ θE , the larger round with FOV
of θtotal always covers any point in the smaller round.

Note that Eq. (17) is a sufficient but not a necessary
condition. Because we transmit more data than necessary, it
is still possible that actually no failure happens even Eq. (17)
is violated.

As discussed earlier, we do not know (ex, ey) and thus we
obtain their estimates (êx, êy) by using the prediction models
in Sec. IV. Then, we can estimate the diagonal deviation as

d̂ = diag(êx, êy). (18)

The diagonal deviation d̂ can be used to decide the transmis-
sion margin θE as discussed later, and the transmitted round
has a beam angle of θ0 + 2θE . For such a transmitted round,
according to [11], its area ratio (angle ratio) can be calculated
as follows

area(θ0+2θE)=

{
1
2−

1
2 cos( θ02 +θE), if θ0+2θE≤360◦;

1, otherwise.
(19)

B. Transmission Algorithms

In the following, we propose three targeted transmission
algorithms. Unlike the traditional machine learning paradigm,
in addition to training data and test data, here we also use part
of the data as decision data, i.e., the data that are used for
transmission-decision making. Assume there are N samples
in the decision data. For each frame i = 1, 2, ..., N , denote its
real deviations by exi and eyi , predicted deviations by êxi and
êyi , and diagonal deviation d̂i = diag(êxi , ê

y
i ).

To measure the viewer experience, we introduce an indicator
Ifi to denote whether the frame i is a failure or not, where
Ifi = 1 if frame i suffers a failure and Ifi = 0 otherwise. The
indicator Ifi is decided by the following parameters: the real
prediction deviations exi and eyi , the Z angle Zi, and the beam
angle of the transmitted round θ0+2θE . Note that Statement 2
provides a sufficient condition for Ifi = 0. In the remaining
(small percentage) cases, to calculate Ifi numerically, one can
perform an exhaustive search in a grid of points with fine
granularity on the FOV. Combining the two cases, we denote

Ifi = ff (exi , e
y
i , Zi, θ0 + 2θE). (20)

The following transmission algorithms decide transmitted area
based on the prediction results, with the objective to minimize
the required bandwidth subject to the failure ratio constraint
rf .

1) TT-A (Targeted Transmission All the time): TT-A trans-
mits the data in the predicted targeted area for all frames. As
discussed in Sec. V-A, due to the motion randomness, a round
with beam angle θ0 +2θE is transmitted in each frame. In TT-
A, we use a constant margin θE , which is chosen by solving
the following optimization problem (P-0) numerically.

(P-0) arg min
θE

area(θ0 + 2θE); (21)

s.t. 1
N

∑N
i=1 I

f
i ≤ rf ; (22)

Ifi = ff (exi , e
y
i , Zi, θ0 + 2θE). (23)

Since the larger θE is, the more the bandwidth it is con-
sumed, and the less the failure occurs, binary search can be
used to obtain the optimal θE effectively.



2) TT-C (Targeted Transmission when Confident): TT-C
transmits the data for the targeted area if the prediction
accuracy is good, and the whole frame otherwise. In addition
to the viewpoint prediction results, TT-C also utilizes the
deviation prediction results to judge whether the viewpoint
prediction is accurate or not. This algorithm needs to decide
two parameters: the margin θE and the threshold dth. When the
predicted diagonal deviation has d̂i ≤ dth, partial transmission
is applied; otherwise, the whole frame is transmitted. During
partial transmission, similar to TT-A, a round with beam angle
θ0 + 2θE of data is transmitted. Given a failure ratio rf , the
optimal θE and dth can be obtained by solving (P-1).

(P-1) arg min
θE ,dth

rparea(θ0 + 2θE) + (1− rp); (24)

s.t. 1
N

∑N
i=1 I

f
i ≤ rf ; (25)

rp = 1
N

∑N
i=1 I

p
i ; (26)

Ipi =

{
1, if d̂i ≤ dth,

0, otherwise;
(27)

Ifi = ff (exi , e
y
i , Zi, θ0 + 2θE) ∧ Ipi . (28)

In Eq. (28), ∧ means the operation of logic and.
The consumed bandwidth is a non-increasing function of

dth and a non-decreasing function of θE . The failure ratio is a
non-decreasing function of dth, and a non-increasing function
of θE . Therefore, we use exhaustive search for one parameter
while binary search for the other to obtain the global optimum.

3) TT-A (HR) (TT-A with Hybrid Resolution): Similar to
TT-A, TT-A (HR) transmits only the targeted area all the
time. However, TT-A (HR) explores an additional degree of
freedom: resolution. Each transmitted area consists of two
resolution portions: high resolution in the center portion and
low resolution in the outside area. Assume high resolution area
has a margin θh and low resolution has a margin θl.

We use the Ratio of Low Resolution (RLR) as a new
performance metric for this hybrid resolution algorithm. RLR
denotes the percentage of frames that have partially low
resolution pixel or missing pixels, and it can be obtained in
the following equation

1
N

∑N
i=1 ff (exi , e

y
i , Zi, θ0 + 2θh). (29)

In this case, the failure ratio is

1
N

∑N
i=1 ff (exi , e

y
i , Zi, θ0 + 2θl). (30)

Assume the bitrate requirement for high resolution and low
resolution transmission are rh and rl, respectively. Then the
consumed bandwidth is

area(θ0+2θh)rh+[area(θ0+2θl)−area(θ0+2θh)] rl. (31)

Given both RLR and failure ratio as constraints, the
bandwidth minimization problem can be decoupled into two
independent (P-0)s: with RLR (resp., failure ratio) as the
constraint, and area(θ0 + 2θh) (resp., area(θ0 + 2θl)) as the
objective function, (P-0) provides the optimal θh (resp., θl).
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Fig. 8. The consumed bandwidth v.s. failure ratio
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Fig. 9. The comparison of TT-A and TT-C.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the proposed algorithms based
on the data that contain 295500 samples. We run 10 iterations
to obtain the average values. In each iteration, 50% of the data
are selected for training the prediction models; the other 50%
are used to see the bandwidth requirements using the above
algorithms with optimized parameters. As we have seen in
Sec. IV, the neural networks achieve more accurate prediction
than linear regressions, and therefore all the algorithms apply
the neural networks. With a perfect prediction of the X , Y
and Z angles, we need to transmit just a rectangle whose area
ratio is 19.66%. Therefore, the bandwidth saving upper bound
is 80.34%.

Figs. 8 shows the consumed bandwidth v.s. failure ratio
of Algorithms TT-A and TT-C, respectively, for a prediction
window ranging from 0.1s to 0.5s. We can see that for a given
failure ratio, the required bandwidth increases as the prediction
window increases. For instance, given 0.1% as the failure
ratio, for both algorithms, additional 15%∼20% bandwidth
is consumed when the prediction window grows from 0.1s to
0.2s, or from 0.2s to 0.3s. Meanwhile, if we limit the consumed
bandwidth to be 50%, both algorithms have their failure ratio
grow by more than 10x, when the prediction window grows
from 0.1s to 0.2s, or from 0.2s to 0.3s. This is because as
the prediction window Tr gets smaller, we can obtain more
accurate predictions that will help us target the viewing area
and reduce the required bandwidth. However, a shorter Tr
allows less time for transmitting and processing the data. Thus,
the prediction window Tr should be carefully adjusted with
regards to the practical network and device conditions.

Figs. 9 compares TT-A and TT-C, for a prediction window
of 0.2s and 0.3s. These figures include a baseline, which
is TT-A with Naive prediction. As discussed in Sec. IV-A,



TABLE III
THE CONSUMED BANDWIDTH OF TT-A (HR) (Tr = 0.2S).

RLR

Failure Ratio
0.1% 0.05% 0.025% 0.0125%

6.4% 0.3783 0.3932 0.4081 0.4217
1.6% 0.4214 0.4363 0.4512 0.4648
0.4% 0.4788 0.4938 0.5087 0.5223
0.1% 0.5525 0.5675 0.5824 0.5960

the Naive prediction uses just the current motion as the
prediction result for future motion. From these figures, we
can see the benefits of viewpoint and deviation prediction.
With viewpoint prediction, given consumed bandwidth in the
range 0.4∼0.8, roughly 10x failure ratio reduction is achieved
by prediction. TT-A, which only uses viewpoint prediction
result is suboptimal compared with TT-C that utilizes both the
viewpoint and deviation prediction results, especially when the
failure ratio is small.

For TT-A (HR), we have Table III to show the consumed
bandwidth given both the failure ratio and the ratio of low
resolution (RLR). Assume the high resolution is 4K and
the low resolution is 1080P. Typically, in this case, a low
resolution frame has 1/4 bitrate of the high resolution frame.
We normalize the low resolution bitrate by the high resolution
bitrate, such that rl = 1/4 and rh = 1. We calculate the
consumed bandwidth of the hybrid resolution transmission
algorithm in Table. III. If low resolution image is acceptable
in certain part, especially in the marginal area, this hybrid
resolution algorithm enjoys both low failure ratio and low
bandwidth compared with other algorithms. For example,
taking 0.2s as the prediction window, from Fig. 8(b), we can
see TT-C consumes 55% bandwidth while having a failure
ratio of 0.1%. For the hybrid resolution algorithm, on the
one hand, given 0.1% as the failure ratio constraint, it further
saves the bandwidth by 13% by tolerating 1.6% RLR; on the
other, given 55% bandwidth consumption, it achieves less than
0.0125% failure ratio while having 0.4% RLR. Therefore, for
a given failure ratio requirement, using the hybrid resolution
algorithm can significantly reduce the required bandwidth.

Last, taking TT-C as an example, we calculate the actual
missing pixels to show that very few pixels are lost in targeted
transmission. We use the ratio of missing pixels (RMP),
defined in Sec. II-C as the performance metric. Fig. 10 shows
the RMP within the FOV. We can see even though a failure
occurs, it is very likely that the viewer only misses the most
left and most right marginal areas. Fig. 11 shows the relation
between RMP and the bandwidth consumption. Compared
with Figs. 8, given the same bandwidth consumption, RMP is
typically over 10x smaller than failure ratio. Because of this,
the viewer can enjoy very high quality viewing experience,
without consuming much bandwidth.

VII. DISCUSSION AND FUTURE WORK

As a first attempt to investigate the feasibility of 360-degree
video bandwidth optimization based on motion-prediction,
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our work has certain limitations and may be improved in
the following directions: 1) From the server to the client,
we transmit a round area, which reduces the complexity of
managing the complicated shapes created by Z dimension
rotation. One could consider other more fitting shapes, e.g.,
rectangles, to further reduce the consumed bandwidth. For
simplicity, the current transmission algorithms use constant
margins based on decision data. In the future, online learning,
e.g. Lyapunov techniques [12] may use adaptive margins
to lower failure ratio and bandwidth consumption. 2) Our
work demonstrates the feasibility and benefits of targeted
transmission for 360-degree video, with the assumption that
the video can be partially transmitted in runtime efficiently.
The findings under this assumption inspire us to study efficient
video-coding and compression schemes to implement targeted
transmission in the future. 3) In our experiment, most viewers
are using VR or watching 360-degree video for the first time.
After they get used to 360-degree video, viewers may change
their behaviors. We conjecture that viewer motion will be more
related to viewer behavior and video content. If this conjecture
is correct, we can expect better performance when a viewer
has used HMD for a longer period of time. In the future, we
will study user behavior and long term motion prediction with
more collected data.

The proposed framework has potential applications beyond
the current scenario of 360-degree video transmissions. For
example, in 360-degree video games, we need GPU to ren-
der the screen. When future viewpoints can be predicted
accurately, GPU computation could be done in advance to
improve viewing experience. To achieve this goal, one must
first understand user behavior in 360-degree video gaming
scenarios, which may be different from behavior in 360-degree
video viewing.

VIII. RELATED WORK

In terms of transmitting 360-degree videos, the most related
work is a protocol named Dynamic Streaming proposed by
Facebook [13]. In this transmission protocol, the data around
the FOV are transmitted with high resolution and the other
areas are transmitted with low resolution. However, without
viewer motion prediction, there is a high probability that
viewers may watch the lower resolution part when they change
their motion fast within one group of pictures (GOP). In our
work, short term motion prediction reduces the pixel loss ratio
to less than 0.1%, which gives user experience a guarantee.



[5] proposes a region adaptive smoothing technique to save
bits at the top and bottom areas in an equirectangular frame,
which reduces up to 20% bitrate. However, the technique is
limited to equirectangular projection of the 360-degree videos.

For viewpoint motion prediction, [14] considers motion pre-
diction with constant angular velocity or acceleration to predict
motion in the scale of 20∼100 ms. However, the method is
not data-driven, and the time scale it considers is not proper
for video transmission. [15] presents a double exponential
smoothing method to predict head position and rotation in the
next 50 ms. Different from [15], we study viewpoint prediction
in the range of 0.1∼0.5s, which is reasonable for video frame
transmission from a server to a client. The longer prediction
windows make prediction results more error-prone, which is
addressed in our work by adding margins.

There is some work on optimizing the process of projecting
360-degree videos from 3D space to 2D space, e.g., equirect-
angular projection, cube-based mapping [16], and pyramid-
based mapping [13]. Different methods have different 3D
reconstruction quality and computing complexity. Compared
with equirectangular projection, cube-based mapping and
pyramid-based mapping can reduce a certain amount of the
bandwidth consumption given the same viewing experience.
In [17], a non-uniform spherical ray sampling method is
proposed to give more priority to the important regions.
In [18], the authors study the mapping between virtual and
physical reality to achieve free walking in a room with limited
space. These projecting methods could be utilized and adjusted
in the implementation of our framework.

Apart from 360-degree videos, there are also free-viewpoint
videos (FVV), where viewers are able to interact with the
scene by navigating to different viewpoints. [19] studies a
FVV streaming system based on DASH (Dynamic Adaptive
Streaming over HTTP) and the multi-view-plus-depth (MVD)
representation to improve viewer’s watching experience and
increase the visual quality of rendered views. [20] develops
optimized prefetching and buffer management policies to
ensure seamless playback for interactive branched videos. [21]
considers multiview video streaming systems and improves ef-
ficiency in coding and content replication strategies. However,
360-degree videos are different from FVV in many aspects,
such as video recording, frame projection, display rendering,
which makes these techniques less applicable to 360-degree
videos.

IX. CONCLUSION

The increasing popularity of 360-degree videos imposes a
significant challenge on networks. To address this challenge,
we study motion-prediction-based transmission schemes that
reduce bandwidth consumption while providing viewing ex-
perience guarantees. First, based on collected viewer motion
data, we show that motion prediction is feasible within a
100∼500 ms timeframe. Based on the viewing motion data, we
develop regression schemes that predict not only the viewpoint
but also the prediction accuracy. Based on such predictions,
we develop a set of partial content transmission schemes

to guarantee viewer experience. Our trace-driven simulation
results show significant bandwidth reduction with viewing
experience guarantees. For example, with a prediction time
scale of 0.2s, our proposed scheme can reduce bandwidth
consumption by 45% while guaranteeing a failure ratio of
0.1%.
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